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1 Bounded Degree Matroids

1.1 Iterative Relaxation

Last class we started discussing the iterative relaxation framework, and used it to prove a
discrepancy bound.

Iterative Relaxation

Consider any linear program and an extreme point solution x. Fix all integer coordinates
of x, delete one of the constraints (in some problem-specific manner), and re-solve. Iterate
until all coordinates are integral.

And we noted the following key fact:

Fact 1.1. In every iteration, the cost of x can only improve. So, the cost of the resulting integer solution is
no worse than integer OPT. Of course, it may not obey all the same constraints as integer OPT since we
deleted some.

In other words, we are relaxing the set of constraints instead of the requirement that we get a
solution of optimal cost.

1.2 Uncrossing for Matroids

In Lecture 11, we showed that given a skew supermodular requirement function for the number
of edges in each cut of a graph we can uncross the set of tight constraints to obtain a laminar
family. In the past, we have also seen how uncrossing can be used to prove the integrality of a
formulation of the spanning tree polytope and in general of matroid polytopes.

Here, we will prove a very similar theorem for matroids. A chain L over a ground set is a
family such that for every A, B ∈ L we either have A ⊆ B or B ⊆ A. If it is not the case that
A ⊆ B or B ⊆ A we say A and B are incomparable.

Theorem 1.2 (Tight Sets form a Chain). Let r be the rank function of a matroid M = (I , E) and let
x ∈ PM. Then, the set of non-trivial tight constraints, i.e. sets F ⊆ E with x(F) = r(F), can be uncrossed
to form a chain L so that {χ(F) | F ∈ L} is linearly independent, consists of sets F with x(F) = r(F),
and spans the set of all non-trivial tight constraints.

Proof. At this point we are quite familiar with these ideas. We start by proving that if A, B are
tight then so are A ∪ B and A ∩ B in the usual way:

r(A) + r(B) = x(A) + x(B) = x(A ∩ B) + x(A ∪ B) ≤ r(A ∩ B) + r(A ∪ B) ≤ r(A) + r(B)
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where we use the submodularity of the rank function in the last step. So, we obtain an equality.
Now, take any maximal linearly independent chain of tight sets. We will prove this is the desired
set.

Suppose by way of contradiction that there is a set A which is not in the span of L and among
all such sets is incomparable with the fewest sets in L. Let B be a set in L it is incomparable with.
By the above, A ∪ B and A ∩ B1 are both tight, and notice that both these sets are incomparable
with fewer sets in L.

Let’s prove this for A ∪ B, as the other case is similar. Suppose A ∪ B is incomparable with a
set C.

1. First suppose that B ⊆ C. If A ⊆ C, then A ∪ B ⊆ C which contradicts that A ∪ B is not a
subset of C. If C ⊆ A, then C ⊆ A ∪ B, again a contradiction.

2. Otherwise C ⊆ B. If A ⊆ C, then C ⊆ A ∪ B, contradiction. If C ⊆ A then C ⊆ A ∪ B,
contradiction.

So, if A ∪ B is incomparable with C then so is A. But A ∪ B is not incomparable with A. So, it is
incomparable with strictly fewer sets as we set out to show.

Thus both A ∩ B and A ∪ B are in the span, implying that L spans A, since χ(A) + χ(B) =
χ(A ∩ B) + χ(A ∪ B).

This gives us a new way to prove that PM is integral for every matroid. In fact, we get
something even stronger: the tight constraints of a matroid only require "half" of the tokens we
can generate.

Corollary 1.3. PM has integral vertices. Furthermore, if there are k fractional variables at a non-vertex
point x ∈ PM, the rank of the tight constraints (after putting all integral elements in the basis) is at most
b k

2c.

Proof. Contract all elements set to 1 and delete all elements set to 0: the resulting object is a new
matroid polytope.

Let L1 ⊆ L2 ⊆ · · · ⊆ Lm be the sets in L from the above theorem. Since L is linearly
independent, Li r Li−1 6= ∅ for 1 ≤ i ≤ m where L0 = ∅. Thus, by the integrality of the rank
function, x(Li r Li−1) ≥ 1. This implies that |Li r Li−1| ≥ 2 since all elements are fractional. Since
every elements lies in at most one such set, |E| ≥ 2m, giving the claim.

In other words, there is a way to assign tokens from elements to tight constraints such that
every constraint gets two tokens. This suggests that maybe we can handle two matroids at the
same time and still maintain integrality. This turns out to be true!

1.3 Matroid Intersection

Let M1, M2 be any two matroids. Let PM1∩M2 be the set of points x with x ∈ PM1 and x ∈ PM2 .
Then we can prove the following:

Lemma 1.4. Every matroid intersection polytope has integral vertices.
1Note A ∩ B may be ∅.
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Proof. We break the constraints into those from M1 and those from M2. Suppose there are k
fractional variables at a point x ∈ PM1∩M2 . Contract all elements set to 1 and delete all elements
set to 0. By Corollary 1.3, the rank of the tight constraints for each matroid is at most b k

2c. So, we
are done unless both have size k

2 and both chains contain the full set of elements. But if they do
then there is a linear dependence as these must be the same constraint.

This allows us to, for example, find a minimum cost arborescence in polynomial time. An
arborescence is a set of edges in a directed graph so that for a fixed root r with in-degree 0, there
is a unique directed path from r to v for every v ∈ V r {r}.

An arborescence is the intersection of a spanning tree matroid and a partition matroid, where
in the partition matroid we constrain |δ+(v)| = 1 for all v ∈ V r {r}.

1.4 Bounded Degree Matroids

Another way to try to exploit the fact that matroids take only "half" the tokens is to add additional
constraints. We will make this work in this subsection, the main result of this lecture.

Consider a matroid M = (I , E) with weights ce ≥ 0 for all e ∈ E, and in addition suppose we
have a hypergraph H with hyperedges B1, . . . , Bk over the ground set E and integers b1, . . . , bk. We
now want to find a minimum cost basis B of M and ensure that |B ∩ Bi| ≤ bi for each 1 ≤ i ≤ k.
Note that if the hypergraph has maximum degree 1 then this can be modeled as a partition
matroid and we can return a basis with no violation at all.

Otherwise, let’s model this as a linear program: we want to minimize ∑e∈E cexe subject to
x ∈ PB

M defined as follows:

PB
M =


x ∈ PM

x(Bi) ≤ bi ∀1 ≤ i ≤ k
0 ≤ xe ≤ 1 ∀e ∈ E

Theorem 1.5 ([KLS12]). Suppose every element has degree at most ∆ in H and that some basis exists that
obeys all bounds. Let B∗ be the cheapest basis obeying all bounds. Then there is a polynomial time algorithm
which outputs a basis B of M with |B ∩ Bi| ≤ bi + ∆− 1 for all 1 ≤ i ≤ k and c(B) ≤ c(B∗).

Proof. We will use the iterative relaxation framework. At each timestep, we will fix integral
variables by deleting elements with xe = 0, contracting elements with xe = 1 (and updating the
bi values), and dropping constraints which have at most bi + ∆− 1 fractional elements. If the
algorithm can always find a new variable set to 0 or 1 or drop a constraint, we will make progress
and end with an integral solution with the desired bounds, as if there are bi + ∆− 1 fractional
elements in a constraint we can clearly violate the bound by at most ∆− 1.

Assign xe tokens to the smallest set in L containing e. Assign 1−xe
∆ tokens to each set Bi

containing e.
Every set F ∈ L gets at least one token. The reason is as follows. Let F′ be the child of

F (possibly, F′ = ∅). Every element in F r F′ contributes xe tokens to F. But x(F r F′) =
x(F)− x(F′) > 0 as otherwise F = F′ and it must be an integer, so it is at least 1.

Secondly, every tight Bi gets at least this many tokens, using that |Bi| ≥ bi + ∆ (as otherwise
we would have dropped the constraint):

1
∆
(|Bi| − x(Bi)) =

1
∆
(|Bi| − bi) ≥

1
∆
(bi + ∆− bi) = 1
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Finally we need to argue that there is a token left over. We are done if any fractional element is
not in exactly ∆ tight constraints Bi since otherwise it has some leftover tokens. Furthermore, if
the set of all elements is not in L we are done, as some elements will give no tokens to a set in L.
So, we may assume both exist. But now, summing over all constraints Bi gives us ∆E, which is a
linear dependence.

1.5 Bounded Degree Spanning Trees

We obtain the following as a corollary, which was a major open question in combinatorial
optimization until this beautiful method was discovered by Singh and Lau in 2007. A previous
result by Goemans [Goe06] gave the same result with k + 2 instead of k + 1 based on matroid
intersection.

Theorem 1.6 ([SL15]). Let G = (V, E) be a weighted graph and k ∈ N. Assume there is a tree with
maximum degree k, and let T∗ be the cheapest such tree. Then, there exists a polynomial time algorithm
which outputs a tree of cost at most c(T∗) and maximum degree k + 1.

This allows us to consider a different metric for approximation: instead of losing on cost,
we can output a solution that has slightly weaker properties than the OPT we compare against.
Notice that the above theorem is tight (unless P=NP). Setting k = 2, this is the Hamiltonian path
problem, so it cannot be solved without losing something on maximum degree (even without
costs).

1.6 Extensions

It turns out that the same guarantee can be given for a spanning tree if we have lower bounds
as well: we can return a tree with minimum degree li − ∆ + 1 and maximum degree ui + ∆− 1
given lower and upper bounds li, ui for each set Bi.

However, for a general matroid the best known is li − 2∆ + 1 and ui + 2∆− 1. Finding an
algorithm with an improved guarantee is an open problem.

References

[Goe06] Michel X. Goemans. “Minimum Bounded Degree Spanning Trees”. In: FOCS. 2006,
pp. 273–282 (cit. on p. 4).

[KLS12] Tamás Király, Lap Chi Lau, and Mohit Singh. “Degree Bounded Matroids and Submod-
ular Flows”. In: Combinatorica 32 (2012), pp. 703–720. doi: 10.1007/s00493-012-2760-6
(cit. on p. 3).

[SL15] Mohit Singh and Lap Chi Lau. “Approximating minimum bounded degree spanning
trees to within one of optimal”. In: Journal of the ACM 62.1 (2015). doi: 10.1145/2629366
(cit. on p. 4).

4

https://doi.org/10.1007/s00493-012-2760-6
https://doi.org/10.1145/2629366

	Bounded Degree Matroids
	Iterative Relaxation
	Uncrossing for Matroids
	Matroid Intersection
	Bounded Degree Matroids
	Bounded Degree Spanning Trees
	Extensions


